Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Forensic Medicine ; (6): 319-323, 2019.
Article in English | WPRIM | ID: wpr-985015

ABSTRACT

Objective To investigate the application of the comprehensive use of multiple genetic markers in full and half sibling relationship testing through the identification of a case of suspected sibling relationship. Methods Genomic DNA were extracted from bloodstain samples from 4 subjects (ZHANG-1, ZHANG-2, male; ZHANG-3, ZHANG-4, female). Autosomal STR loci, X-STR, Y-STR loci and polymorphisms of mtDNA HV-Ⅰ and Ⅱwere genotyped by EX20 STR kit, X19 kit, Data Y24 STR kit, and Sanger sequencing, respectively. Results According to autosomal STR based IBS scoring results, full sibling relationships were indicated among ZHANG-2, ZHANG-3 and ZHANG-4, but those were not indicated between ZHANG-1 and ZHANG-2 or ZHANG-3 or ZHANG-4. According to autosomal STR based FSI and HSI, with ITO method and discriminant function method, full sibling relationships among ZHANG-2, ZHANG-3 and ZHANG-4 were indicated, and half sibling relationships between ZHANG-1 and ZHANG-2 or ZHANG-3 or ZHANG-4 were also indicated. X-STR and mtDNA sequencing results showed that all the 4 samples came from a same maternal line, and Y-STR results showed that ZHANG-1 and ZHANG-2 did not come from a same paternal line, which supported the half sibling relationship between ZHANG-1 and ZHANG-2 or ZHANG-3 or ZHANG-4, verified by parental genotype reconstruction based on autosomal STR genotyping. Conclusion For the identification of sibling relationships, it is effective to have reliable results with the mutual verification and support of multiple genetic markers (autosomal STR, sex chromosomal STR and mtDNA sequence) and calculations (IBS, ITO, discriminant function method and family reconstruction).


Subject(s)
Female , Humans , Male , Alleles , Chromosomes, Human, Y , DNA Fingerprinting , Forensic Genetics , Genetic Markers , Genotype , Microsatellite Repeats , Siblings
2.
Chinese Journal of Contemporary Pediatrics ; (12): 352-357, 2018.
Article in Chinese | WPRIM | ID: wpr-689627

ABSTRACT

<p><b>OBJECTIVE</b>To study the combined effect of gestational age and birth weight on metabolites related to inherited metabolic diseases (IMD).</p><p><b>METHODS</b>A total of 3 381 samples ruled out of IMD by follow-up were randomly selected from 38 931 newborns who participated in the neonatal IMD screening during 2014-2016. The 3 381 neonates were categorized into seven groups according to their gestational age and birth weight: extremely preterm appropriate-for-gestational age (AGA) group (n=12), preterm small-for-gestational age (SGA) group (n=18), preterm AGA group (n=219), preterm large-for-gestational age (LGA) group (n=18), full-term SGA group (n=206), full-term AGA group (n=2 677), and full-term LGA group (n=231). Heel blood samples were collected from each group on postnatal days 3-7 after adequate breastfeeding. Levels of 17 key IMD-related metabolic indices in dried blood spots were measured using tandem mass spectrometry. Spearman′s correlation analysis was used to investigate the relationships between 17 IMD-related metabolic indices and their influencing factors, while covariance analysis was used to compare the metabolic indices between these groups.</p><p><b>RESULTS</b>After adjusting the influencing factors such as physiological and pathological status, compared with the full-term AGA group, the extremely preterm AGA, preterm SGA, and preterm AGA groups had significantly reduced levels of leucine\isoleucine\hydroxyproline and valine (P<0.05); the preterm AGA group had a significantly decreased ornithine level (P<0.05); the extremely preterm AGA and preterm AGA groups had a significantly reduced proline level (P<0.05). Besides, the phenylalanine level in the extremely preterm AGA and preterm AGA groups, the methionine level in the preterm SGA group, and the tyrosine level in the preterm AGA group all significantly increased (P<0.05). The increased levels of free carnitine, acetylcarnitine, and propionylcarnitine were found in the preterm SGA and preterm AGA groups. The oleylcarnitine level also significantly increased in the preterm SGA group (P<0.05). Most carnitine indices showed significant differences between the SGA group and the AGA/LGA group in both preterm and full-term infants (P<0.05).</p><p><b>CONCLUSIONS</b>Low gestational age and low birth weight may result in abnormal results in IMD screening. Therefore, gestational age and birth weight should be considered to comprehensively judge the abnormal results in IMD screening.</p>


Subject(s)
Female , Humans , Infant, Newborn , Male , Birth Weight , Gestational Age , Infant, Small for Gestational Age , Metabolic Diseases , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL